Emotional State Categorization from Speech: Machine vs. Human

نویسندگان

  • Arslan Shaukat
  • Ke Chen
چکیده

This paper presents our investigations on emotional state categorization from speech signals with a psychologically inspired computational model against human performance under the same experimental setup. Based on psychological studies, we propose a multistage categorization strategy which allows establishing an automatic categorization model flexibly for a given emotional speech categorization task. We apply the strategy to the Serbian Emotional Speech Corpus (GEES) and the Danish Emotional Speech Corpus (DES), where human performance was reported in previous psychological studies. Our work is the first attempt to apply machine learning to the GEES corpus where the human recognition rates were only available prior to our study. Unlike the previous work on the DES corpus, our work focuses on a comparison to human performance under the same experimental settings. Our studies suggest that psychology-inspired systems yield behaviours that, to a great extent, resemble what humans perceived and their performance is close to that of humans under the same experimental setup. Furthermore, our work also uncovers some differences between machine and humans in terms of emotional state recognition from speech.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards automatic emotional state categorization from speech signals

This paper investigates the performance of automatic emotional state categorization from speech signals on the Serbian Emotional Speech Corpus, named GEES, against the corresponding human performance. We employ a multistage strategy along with sophisticated features used for automatic emotional state categorization. Our study is the first attempt to apply a machine learning technique to the GEE...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Extracting Emotion from Speech: Towards Emotional Speech-Driven Facial Animations

Facial expressions and characteristics of speech are exploited intuitively by humans to infer the emotional status of their partners in communication. This paper investigates ways to extract emotion from spontaneous speech, aiming at transferring emotions to appropriate facial expressions of the speaker’s virtual representatives. Hence, this paper presents one step towards an emotional speechdr...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1009.0108  شماره 

صفحات  -

تاریخ انتشار 2010